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After performing the inversion of a 5-point Poisson operator [i] and a 9-point 
Poisson operator [2] analytically, an attempt was made to do the same thing for 
the “optimal” Poisson operator that goes with parabolic splines. Lewis’ variational 
principle [3] prescribes such an operator uniquely. Preference was given to parabolic 
splines because in all probability the computationally more costly higher order 
splines will not be used for potential evaluations on a production basis. 

The 5-point operator is constructed from the requirement that it should be exact 
for potential distributions that are cubic in x and y and hence for linear charge 
distributions. 

The 9-point operator springs from the requirement that fifth order potentials, 
or cubic charge distributions, should be handled accurately. 

Lewis’ operator connects an array of spline coefficients for the potential with a 
charge distribution which is itself a superposition of splines. Both sets of splines 
are taken of the same order-parabolic by our choice. These splines have the 
profile 
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and zero elsewhere. 

(Three parabolic segments are joined smoothly to each other and to the horizontal 
axis at the ends, forming a bell-shaped curve overall.) 

Inserting the spline profile (1) into Eq. (50) of Lewis’ paper on the variational 
technique [3], one obtains a one-dimensional Jive-point Poisson operator with 
coefficients l/6, l/3, -1, l/3, l/6. This was used by Lewis himself in some pre- 
liminary tests of his scheme [4] and transformed into Fourier space by Langdon [5], 
who also draws attention to the factorization of this operator, i.e., it can be 
represented as a2( 1 + S2/6) where a2 is the second-order central difference operator. 
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In two dimensions we have to use Eq. (63) of Lewis’ paper [3] and we obtain a 
25point operator with the coefficients 

more convincingly expressed in central difference notation: 

CL2 t &4)(1 + $6,” + &SV4) + same with x and y reversed. 

Symbolically, we can invert this operator by writing it as a denominator, and 
we might then compare it with, say, the corresponding symbolic inverse 5-point 
and g-point operators of [ 1, 21, namely, 

P, = I/(&; t S,2), (2) 
P, = l/(&Z * 6,” + ~,2~,2/6) + (l/W. (3) 

(The denominator in Pg is readily checked to be the central-difference representa- 
tion of the coefficients for the g-point operator given in [7].) 

However, there is a difference between the function of the Lewis operator and 
that of the two others. P, and P, generate arrays of potentials from arrays of 
density. Lewis’ operator generates an array of spline coefficients for the potential. 
To get, instead, the potential array itself, we have to apply the three weights, 
l/S, 3/4, l/S at x = - 1, 0 and 1 of the profile (1) to all entries of the spline coeffi- 
cient array. This amounts to operating on the array with 1 + P-/8, and it must be 
done in two dimensions, meaning that (1 + Sz2/8)(l + Su2/8) should be applied. 

Furthermore, the spirit of Lewis’ scheme [3] is to spread any single charge into 
a cloud with the profile (I) in both dimensions in order to generate an array of 
gridpoint density values. An array of charges located exactly at the gridpoints 
will therefore be spread into the density array given, again, by application of the 
operator (1 + Sz2/8)(1 + SV2/8). 

Combining the two considerations of the two preceding paragraphs, we see that 
for a comparison of P, and P, with the Lewis operator, we ought to employ a 
numerator (I + S,2/8)2(1 + S1,2/8)2 when symbolically inverting the latter: 

Pr = 
(1 + &‘/8)’ (1 + Sy2/8)2 

(s 
3c2 f S,4/6)(1 + 6,2/4 + 8y4/120) + same with x, y reversed ’ 

(4) 

The logic of having to apply the operator (1 + Sz2/8)(1 + SU2/8) twice directly 
in order to get from an array of discrete charges to an array of actual potentials 
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may seem strange. One is tempted to apply this operator inversely on one of these 
occasions and hence to cancel the two operations against each other. However, 
one can convince oneself that the original prescription is correct by following 
Lewis’ rules [3] for finding the potential anywhere between gridpoints due to a 
charge located away from any gridpoints, and then letting both the point of 
observation and the charge approach a gridpoint. 

Our aim is to evaluate the inverse Lewis operator which is formally written 
down in 4. By this we mean tabulation of the corresponding kernel or “Greens 
function”, such as given for the 5-point and 9-point operators in Refs. [l, 21. There 
seems to be little hope of success with the method used for the inversion of the 
5-point and 9-point operators, i.e., Fourier transforming in one dimension and 
solving a recurrence relation in the other. 

Instead, we try Fourier transforms in both dimensions. Starting with a large 
periodicity square consisting of N-by-N gridpoints, and with the harmonic which 
varies like exp(2xi(Kx L Ly)/N), one obtains the numbers 

SJ2 = -(2 sin 7rK/N)2, S,* = -(2 sin 7rL/N)” 

for the central difference operators, and each of our three inverse Poisson operators, 
P5, P, and PI-, becomes a K- and L-dependent number. 

For an isolated negative gaussian unit charge at the origin the double Fourier 
transform of Y2@ is independent of K and L, namely, 47r/N2. Multiplying by one 
of the operators P and back-transforming, we get the following potential relutire 
to the origin: 

Since P is even in K and L, the (odd) imaginary parts of the exponentials can be 
ignored, leaving only the cosines. 

All three P’s become large like --(N/~~T)~/(K~ + L2) for small K and L. It is 
convenient to avoid these large numbers in the numerical evaluation of the double 
sum, even though they are compensated by the factor containing the exponentials 
or cosines. Since we have already calculated CD for the 9-point operator analytically 
[2], we may subtract the 9-point results and concern ourselves only with the 
difference 

y (pL - P,)jcos ?$T cos 
l-N/2 l-N.‘2 

This difference was evaluated for integer x and y ranging each from 0 to 3, 
using N = 256. The results are shown in Table I below. Using N = 128 gave the 
same results to eight digits accuracy, so that the periodicity cell had been taken 
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TABLE I 

Difference between Lewis potentials and 9-point potentials relative to infinity (QL - @, - 0.19493) 

-0.19493 0.07620 -0.03396 0.01016 
-0.01314 0.00897 -0.00432 

-0.00113 0.00143 
-0.00025 

large enough. In fact, the double sum is an adequate approximation to the ideal 
double integral obtained by defining k = 2nK/N, I = 2rrLIN, 6k = 61= 24N 
and letting N tend to infinity: 

CDL. - CD9 = ; j-” j- (P,. - P,)(cos kx cos ly - 1) dk dl. 
0 0 

Even though PL - P, remains moderate as K and L tend to zero, a special 
algorithm had to be written for evaluating PL - Pg when both K and L are small, 
so as to avoid subtraction of nearly equal large numbers. Now the remarkable 
thing is that an expansion in ascending powers of K and L showed that PL - P9 
is not only finite as K, L---f 0, but it is small and of second order in K and L. 
(Without the numerator (1 + 6,2/8)2(1 + Sl/2/8)2 which we introduced after 
rather subtle reasoning, this would not have been so.) 

A contour map of P, - PL is shown in Fig. 1 over one quadrant of the wave- 
number plane (K from 0 to 128 across, L from 0 to 128 down). In this display 
the location (K, L) contains the last hexadecimal place of the integer part of 
256(P, - PL), provided it is odd. An unreduced version of the diagram permits 
one to read the characters; they are I, 3, 5,7, 9, B, D, F, 1 in the successive bands 
starting from the top left. The figure shows that nothing much happens until one 
gets to the harmonics which vary fast enough to reverse sign between adjacent 
cells. At long and moderate wavelengths the Lewis and g-point operators give 
almost indistinguishable results, both coming very close to the ideal logarithmic 
potential, since both P, and PL differ from the ideal inverse Laplacian, i.e., from 
- 1 /(k2 + 12), by terms which go to zero quadratically in k and 1. 

Since PL - P, is so smooth, one can deal with the limit x--f co, y + cc by 
simply omitting the cosines in the double sum above; they average out to zero in 
this limit. It was found that QL - OS -+ 0.19493 in this limit. We know [2] that 
QD,, when adjusted to zero at the origin, tends to Zn(x2 + y”) + 2y + ln12 - 7~13. 
Thus cD~ tends to a limit 0.19493 higher than this expression. In Table I we have 
deducted 0.19493 throughout, so that the table compares the two potentials rela- 
tive to infinity, not relative to the origin. 

The difference P, - P, is not small at the origin of wavenumber space. There 
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FIG. 2. Fourier transform of difference between Spoint and 9-point inverse operators 
P, - Pg + l/12, scaled up by 256. Fourth quadrant of k, I-plane. k and I from 0 to T, 

in P, - P, + l/12. Hence one can still get values for x, y + co by simply omitting 
the more and more rapidly varying cosine terms in the integral. The remaining 
integration of P5 - P, + l/12 was carried out numerically (which necessitated a 
Richardson extrapolation because of the weird behavior of the integrand at the 
origin). However, it can also be done analytically. Two plausible transformations 
give the result: First to variables f = cot k/2, 7 = cot Z/2, and then to polar 
coordinates in the 5, r) plane. The result is G9 - (n/3) - G5 --f ln(3/2), confirming 
the In 12 in the constant of the logarithmic approximation to Q9 which had 
previously been found empirically. 
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TABLE 11 
9-point (top line), Lewis (middle line) and Spoint (bottom line) potentials expressed in terms 

of the logarithmic potential 

-2.59214 -0.01174 In4 -0.00484 
-2.78701 +0.06446 In4 -0.03880 
-3.23387 -0.09228 In4 -0.05380 

In2 +0.00668 In5 +0.00139 
In2 -0.00646 In.5 t0.01036 
In2 +0.07298 In5 $0.01510 

ln8 $0.00075 
In8 -0.00038 
In8 +0.02002 

ln9 -0.00107 
In9 +0.00909 
In9 -0.02402 

In10 -0.00004 
In10 -0.00436 
in10 -0.00253 

In13 +0.00027 
In13 +0.00170 
In13 +0.00944 

In18 +0.00018 
In18 -0.00007 
In18 +0.00909 

In Table II we summarize the results for all three operators, using ln(x2 + u’) 
as reference everywhere except, of course, at the origin. Comparison with the 
logarithm may be used as a criterion of merit only if one aims at reproducing the 
potential of a highly concentrated source at the origin. In that case the order of 
merit seems to be: 5-point-Lewis---point; however, along the diagonal the 
Lewis operator beats the 9-point operator by a small margin. The greatest differ- 
ence is in the depression at the origin where the 9-point operator, by virtue of 
being furthest away from the logarithmic value - W, promises least grid noise in 
particle motion. As explained in [6], the value at the origin can be interpreted as 
the central potential created by a circular uniform column of charge. In the case 
of Lewis’ operator this column would have to be given a radius of 0.4092 mesh 
units (as against 0.4511 for the nine-point, 0.3273 for the five-point scheme). 

However, the motive for using quadratic splines and optimizing the Poisson 
operator accordingly is to provide a smooth rather than a spiky density input. It 
would therefore be more logical to perform tests on smooth density profiles, such 
as the splines themselves (Eq. (I)), rather than localized sources. These spline 
profiles should be moved around between grid points. Likewise, the resulting 
potentials should not be observed at discrete gridpoints: they should be averaged, 
again with a spline-like profile, over a neighborhood, to see how a smooth distri- 
bution of matter responds. 

Such tests with smoothed input and output have not yet been made,l but per- 

1 The above-mentioned behavior of Pg and PL for k, I -+ 0 indicates that P, and PL will be 
superior to P5 at moderate to long wavelengths. 
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formance on strongly localized sources has been further tested by running the 
subgrid resolution program of [6] with Lewis’ operator in place of the nine-point 
operator. 

In practice, this was achieved by adjusting 


